Synaptic connections between GABA-immunoreactive neurons and uniglomerular projection neurons within the antennal lobe of the cockroach,Periplaneta americana

Synapse ◽  
1998 ◽  
Vol 29 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Paul G. Distler ◽  
Claudia Gruber ◽  
J�rgen Boeckh
2021 ◽  
Vol 383 (1) ◽  
pp. 59-73
Author(s):  
Debora Fuscà ◽  
Peter Kloppenburg

AbstractHighly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.


2019 ◽  
Author(s):  
Marco Paoli ◽  
Hiroshi Nishino ◽  
Einat Couzin-Fuchs ◽  
C. Giovanni Galizia

AbstractThe general architecture of the olfactory system is highly conserved from insects to humans, but neuroanatomical and physiological differences can be observed across species. The American cockroach, inhabiting dark shelters with a rather stable olfactory landscape, is equipped with long antennae used for sampling the surrounding air-space for orientation and navigation. The antennae’s exceptional length provides a wide spatial working range for odour detection; however, it is still largely unknown whether and how this is also used for mapping the structure of the olfactory environment. By selective labelling antennal lobe projection neurons with a calcium sensitive dye, we investigated the logic of olfactory coding in this hemimetabolous insect. We show that odour responses are stimulus-specific and concentration-dependent, and that structurally related odorants evoke physiologically similar responses. By using spatially confined stimuli, we show that proximal stimulations induce stronger and faster responses than distal ones. Spatially confined stimuli of the female pheromone periplanone-B activate sub-region of the male macroglomerulus. Thus, we report that the combinatorial logic of odour coding deduced from holometabolous insects applies also to this hemimetabolous species. Furthermore, a fast decrease in sensitivity along the antenna, not supported by a proportionate decrease in sensillar density, suggests a neural architecture that strongly emphasizes neuronal inputs from the proximal portion of the antenna.Summary statementBy selective labelling the cockroach’s antennal lobe output neurons, we investigated the logic of olfactory coding in a hemimetabolous insect, showing that odour responses are stimulus-specific, concentration-dependent, and preserve information on the spatial structure of the stimulus.


2017 ◽  
Vol 98 ◽  
pp. 214-222 ◽  
Author(s):  
Takuya Nirazawa ◽  
Takeshi Fujii ◽  
Yoichi Seki ◽  
Shigehiro Namiki ◽  
Tomoki Kazawa ◽  
...  

2011 ◽  
Vol 71 ◽  
pp. e79
Author(s):  
Masashi Tabuchi ◽  
Takeshi Sakurai ◽  
Hidefumi Mitsuno ◽  
Shigehiro Namiki ◽  
Ryo Minegishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document